04/02/2025, 11:01 AM UTC
基于人工智能的车辆预测性维护:发动机故障检测AI Vehicle Predictive Maintenance
➀ 本文介绍了一种基于人工智能的预测性维护系统,该系统通过声音分析来检测车辆发动机的故障。系统使用Google Teachable Machine训练出能够区分正常和异常发动机声音的人工智能模型。
➁ 该AI模型在浏览器中运行,持续监控发动机的声音。一旦检测到异常,它会立即触发警报并发送HTTP请求到IndusBoard Coin,后者作为Web服务器处理警报。
➂ IndusBoard Coin还托管了一个网页,以视觉方式显示系统的状态。如果检测到故障,网页将变红并显示警报消息,同时激活闪烁的LED作为警告指示器。
➀ This article introduces an AI-based predictive maintenance system designed to detect engine faults in vehicles through sound analysis. The system uses Google Teachable Machine to train an AI model capable of distinguishing between normal and abnormal engine sounds.
➁ The AI model runs in a browser, continuously monitoring the engine's sound. Upon detecting an anomaly, it triggers an immediate alert and sends an HTTP request to the IndusBoard Coin, which acts as a web server to process the alert.
➂ The IndusBoard Coin also hosts a webpage that visually indicates the system's status. If a fault is detected, the webpage turns red and displays an alert message while activating a blinking LED as a warning indicator.
---
本文由大语言模型(LLM)生成,旨在为读者提供半导体新闻内容的知识扩展(Beta)。