02/17/2025, 12:09 PM UTC
Eindhoven:VCSEL和DML的创新数据传输技术Eindhoven: VCSEL and DML Innovations in Data Transmission
<p>➀ 云计算、高清视频流、5G连接和人工智能计算等领域数据流量的指数级增长,需要创新解决方案来处理不断增长的数据量,同时保持低延迟和高可靠性。</p><p>➁ 基于多模光纤(MMF)的垂直腔面发射激光器(VCSEL)收发器由于其低成本和低功耗,成为短距离传输的首选解决方案。然而,MMF的色散限制了超过100G的数据速率。</p><p>➂ Eindhoven使用980 nm VCSEL在优化后的500m MMF上实现了56 Gbps的传输,将模态带宽优化到14.2 GHz·km。</p><p>➃ 该研究还关注晶圆级异集成,以提高高速互连,并改善激光二极管的热管理。</p><p>➄ 具有光子-光子共振(PPR特性的InP膜直接调制半导体激光器(DML)在短距离通信系统中具有很大的应用潜力,具有小尺寸、高能量效率和宽调制带宽等优点。</p><p>➅ 激光性能的分析揭示了相位优化对于实现平滑响应和扩展带宽的重要性。</p><p>➀ The exponential growth of data traffic in cloud computing, high-definition video streaming, 5G connectivity, and AI computing requires innovative solutions to handle increasing data volumes with low latency and high reliability.</p><p>➁ VCSEL transceivers based on MMF are favored for short-distance transmission due to their low cost and power consumption. However, MMF dispersion limits data rates over 100G.</p><p>➂ Eindhoven has achieved 56 Gbps transmission over 500m MMF using 980 nm VCSELs, optimizing modal bandwidth to 14.2 GHz·km.</p><p>➃ The research also focuses on wafer-scale heterogeneous integration for high-speed interconnects, improving thermal management for laser diodes.</p><p>➄ InP membrane DMLs with PPR characteristics show potential for short-range communication systems, offering small footprint, high energy efficiency, and high modulation bandwidth.</p><p>➅ The analysis of laser performance reveals the importance of phase optimization for achieving smooth response and expanded bandwidth.</p>
---
本文由大语言模型(LLM)生成,旨在为读者提供半导体新闻内容的知识扩展(Beta)。